

Aga

 Tutorial

Tutorial

Preliminaries

Ensure the aga CLI is available in your environment (which aga) and updated
to the current version (aga --version). If not, you can install it with pip
or a tool like poetry [https://github.com/python-poetry/poetry].

Getting Started

We’re going to write a simple autograder for a basic problem: implementing a
function to square an integer.

Whenever you write an aga autograder, you start by writing a reference
implementation, which aga calls the golden solution. The library is based on
the idea that reference implementations have uniquely beneficial properties for
autograding homework; see motivation. So, here’s our
implementation:

def square(x: int) -> int:
 """Square x."""
 return x * x

The type annotations and docstring are just because they’re good practice; as of
now, aga does nothing with them. You might put, for example, the text of the
problem that you’re giving to students, so it’s there for easy reference.

Now we need to tell aga to turn this into a problem. We do that with the
problem decorator:

from aga import problem

@problem()
def square(x: int) -> int:
 """Square x."""
 return x * x

Aga’s API is based around decorators; if you’re not familiar with them, I
suggest finding at least a brief introduction. problem will always be the
first decorator you apply to any golden solution.

Now if we save this as square.py, we could run aga gen square.py in that
directory, which would generate a problem.zip file. However, we’re not quite
done: we haven’t given aga any test inputs yet! Let’s do that:

from aga import problem, test_case

@test_case(-2)
@test_case(2)
@problem()
def square(x: int) -> int:
 """Square x."""
 return x * x

Now re-run aga gen square.py and upload the resultant file to
Gradescope [https://gradescope-autograders.readthedocs.io/en/latest/getting_started/].

There are a couple of things to know about this behavior.

First, there must be exactly one problem present in square.py. This is a
limitation that will hopefully be relaxed in the future.

Second, while the student can upload any number of files, precisely one of them
must contain a python object matching the name of the reference solution; in this
case, square (note that the reference solution object’s name is used even if
another name is assigned to the problem itself via the name argument to the
decorator). Otherwise, the solution will be rejected. It’s extremely important
to communicate this restriction to students.

Third, each test case will be run against the student’s submission and the
golden solution. If the outputs differ, the test will be marked as failing. The
score of each test case will be half of the total score of the problem; by
default, each test case has equal weight. Modifying this default will be
discussed in
Customizing Test Case Score.

You can use a similar syntax for multiple arguments, or keyword arguments:

@test_case(2, 1) # defaults work as expected
@test_case(2, 1, sign=False)
@test_case(-3, 4, sign=False)
@problem()
def add_or_subtract(x: int, y: int, sign: bool = True) -> int:
 """If sign, add x and y; otherwise, subtract them."""
 if sign:
 return x + y
 else:
 return x - y

As a final note, you often won’t want to upload the autograder to gradescope
just to see the output that’s given to students. You can use the aga run
command to manually check a student submission in the command line.

Testing the Golden Solution

We still have a single point of failure: the golden solution. Golden tests are
aga’s main tool for testing the golden solution. They work like simple unit tests;
you declare an input and expected output, which aga tests against your golden
solution. We expect that any cases you want to use to test your golden solution
will also be good test cases for student submissions, hence the following
syntax:

@test_case(-2, aga_expect = 4)
@test_case(2, aga_expect = 4)
@problem()
def square(x: int) -> int:
 """Square x."""
 return x * x

Note that we prefix all keyword arguments to the test_case decorator with
aga_, so that you can still declare test inputs for problems with actual
keyword arguments.

aga can now check golden stdout now as well! Just add aga_expect_stdout to the test case(s). The format for the aga_expect_stdout is either a str or a Iterable of str.

When a str is given, the given string will be checked against all the captured output. When an Iterable is given, the captured output string will be divided using splitlines, meaning each string in the Iterable should contain NO \n characters.

The following examples will show.

@test_case(10, 20, aga_expect_stdout="the result is 30\n", aga_expect=30)
@problem()
def add(a: int, b: int) -> int:
 """Add two numbers."""
 print("the result is", a + b)
 return a + b

@test_case("Bob", aga_expect_stdout=["What is your name? ", "Hello, world! Bob!"])
@problem(script=True)
def hello_world() -> None:
 """Print 'Hello, world!'."""
 name = input("What is your name? ")
 print(f"Hello, world! {name}!")

If you run aga check square, it will run all golden tests (i.e., all test
cases with declared aga_expect), displaying any which fail. This also happens
by default when you run aga gen square.py, so you don’t accidentally upload a
golden solution which fails unit testing.

Customizing Test Case Score

By default, aga takes the problem’s total score (configured on Gradescope) and
divides it evenly among each problem. This division is weighted by a parameter,
aga_weight, of test_case, which defaults to 1. If our total score is 20,
and we want the 2 test case to be worth 15 and the -2 to be worth 5, we can
do this:

@test_case(-2, aga_expect = 4)
@test_case(2, aga_expect = 4, aga_weight = 3)
@problem()
def square(x: int) -> int:
 """Square x."""
 return x * x

It is also possible to directly control the value of test cases:

@test_case(-2, aga_expect = 4) # will get 100% of (total - 15) points
@test_case(2, aga_expect = 4, aga_weight = 0, aga_value = 15)
@problem()
def square(x: int) -> int:
 """Square x."""
 return x * x

However, this is not recommended, because it can lead to strange results if
there is incongruity between the values assigned via aga and the total score
assigned via Gradescope.

For complete semantics of score determination, see Determining
Score.

Generating Test Cases

You can check out examples/inputs_for_test_cases.py in the GitHub repo for more complete examples and comparisons.

If we want many test cases, we probably don’t want to enumerate all of them by
hand. Aga therefore provides the test_cases
decorator, which makes it easy to collect python generators (lists, range,
etc.) into test cases.

Let’s start by testing an arbitrary set of inputs:

from aga import problem, test_cases

@test_cases(-3, -2, 0, 1, 2, 100)
@problem()
def square(x: int) -> int:
 """Square x."""
 return x * x

This will generate six test cases, one for each element in the list. Test cases
generated like this must share configuration, so while you can pass e.x.
aga_weight to the decorator, it will cause each test case to have that
weight, rather than dividing the weight among the test cases.

The @test_cases(-3, -2, 0, 1, 2, 100) is equivalent to

from aga import param, test_cases, problem

@test_cases(param(-3), param(-2), param(0), param(1), param(2), param(100))
@problem()
def square(x: int) -> int:
 """Square x."""
 return x * x

The directive param is used to wrap parameters to a function. Each param object is considered as a test case.

Similarly, we can generate tests for all inputs from -5 to 10:

@test_cases(*range(-5, 11))
@problem()
def square(x: int) -> int:
 """Square x."""
 return x * x

This will generate 16 test cases, one for each value in the range.

Or, we can generate tests programmatically, say from a file:

from typing import Iterator

def inputs() -> Iterator[int]:
 with open("INPUTS.txt", "r", encoding="UTF-8") as f:
 for s in f.readlines():
 yield int(s.strip())

@test_cases(*inputs())
@problem()
def square(x: int) -> int:
 """Square x."""
 return x * x

The generation happens when you run aga gen on your local machine, so you can
rely on resources (network, files, etc) not available in the Gradescope
environment.

Multiple Arguments

Basics of Multiple Arguments

Say we want to generate inputs for multiple arguments (or keyword arguments),
e.x. for a difference function. We can use the natural syntax:

@test_cases([(-3, 2), (-2, 1), (0, 0)], aga_params=True)
@problem()
def difference(x: int, y: int) -> int:
 """Compute x - y."""
 return x - y

There are four ways you can specify a batch of test cases: params, zip and product.

	aga_params will only take one iterable object, and each element in the iterable object will be unfolded when applied to the function. The example above will generate 3 tests, each to be difference(-3, 2), difference(-2, 1) and difference(0, 0). In the case where you want to add keyword arguments, you can use the param directive.

from aga import problem, test_cases, param
@test_cases([param(-3, y=2), param(-2, y=1), param(0, y=0)], aga_params=True)
@problem()
def difference(x: int, y: int) -> int:
 """Compute x - y."""
 return x - y

which is equivalent to

from aga import problem, test_cases, param
@test_cases([(-3, 2), (-2, 1), (0, 0)], aga_params=True)
@problem()
def difference(x: int, y: int) -> int:
 """Compute x - y."""
 return x - y

	<no-flag> Note that this is different from the one above with aga_params flag. The example blow will generate 3 tests as well, but each to be difference((-3, 2)), difference((-2, 1)) and difference((0, 0)).

@test_cases((-3, 2), (-2, 1), (0, 0))
@problem()
def difference(tp) -> int:
 """Compute x - y."""
 x, y = tp
 return x - y

	aga_singular_params works similarly to aga_params. The following code is equivalent to difference((-3, 2)), difference((-2, 1)) and difference((0, 0)). (Note that the aga_params flag is not needed.)

from aga import problem, test_cases, param
@test_cases([(-3, 2), (-2, 1), (0, 0)], aga_singular_params=True)
@problem()
def difference(tp: Tuple[int, int]) -> int:
 """Compute x - y."""
 x, y = tp
 return x - y

It comes useful when you have a iterable of things where each single thing is going to serve as a parameter.

from aga import problem, test_cases, param
@test_cases(range(5), aga_singular_params=True)
@problem()
def square(x: int) -> int:
 """Compute x - y."""
 return x * x

The @test_cases(range(5), aga_singular_params=True) is equivalent to expanding the generator in the no flag version @test_cases(*range(5)). Note that @test_cases(range(5), aga_params=True) is not valid.

	aga_product will take the cartesian product of all the arguments. In the above example, there will be 15 test cases, one for each combination of the arguments.

@test_cases([-5, 0, 1, 3, 4], [-1, 0, 2], aga_product=True)
@problem()
def difference(x: int, y: int) -> int:
 """Compute x - y."""
 return x - y

	aga_zip will take the zip of all the arguments. In the example below, there will be 3 test cases, one for each pair of the arguments. This will short-circuit when the smaller iterator ends, so this will generate
three test cases: (-5, -1), (0, 0), and (1, 2).

@test_cases([-5, 0, 1, 3, 4], [-1, 0, 2], aga_zip=True)
@problem()
def difference(x: int, y: int) -> int:
 """Compute x - y."""
 return x - y

Shorthands

You will find typing all the aga_product etc. to be tedious. In that case, you can use the shorthands provided. There are two ways you can write it simpler.

	from aga import problem, test_cases

@test_cases([-5, 0, 1, 3, 4], [-1, 0, 2])
@problem()
def fn() -> None:
 # this is the same as @test_cases(...)
 ...

@test_cases.params([-5, 0, 1, 3, 4], [-1, 0, 2])
@problem()
def fn() -> None:
 # this is the same as @test_cases(..., aga_params=True)
 ...

@test_cases.product([-5, 0, 1, 3, 4], [-1, 0, 2])
@problem()
def fn() -> None:
 # this is the same as @test_cases(..., aga_product=True)
 ...

@test_cases.zip([-5, 0, 1, 3, 4], [-1, 0, 2])
@problem()
def fn() -> None:
 # this is the same as @test_cases(..., aga_zip=True)
 ...

@test_cases.singular_params(([-5, 0, 1, 3, 4], [-1, 0, 2]))
@problem()
def fn() -> None:
 # this is the same as @test_cases(..., aga_singular_params=True)
 ...

	from aga import problem, test_cases_params, test_cases_product, test_cases_zip

@test_cases_params([-5, 0, 1, 3, 4], [-1, 0, 2])
@problem()
def fn() -> None:
 # this is the same as @test_cases(..., aga_params=True)
 ...

@test_cases_product([-5, 0, 1, 3, 4], [-1, 0, 2])
@problem()
def fn() -> None:
 # this is the same as @test_cases(..., aga_product=True)
 ...

@test_cases_zip([-5, 0, 1, 3, 4], [-1, 0, 2])
@problem()
def fn() -> None:
 # this is the same as @test_cases(..., aga_zip=True)
 ...

Note on aga_* keyword arguments

At this point, you might wonder what could be the input to aga_* keyword arguments. The good news is that you can do both singletons or iterables. When singleton is given, aga will match the number with the number of test cases. When an iterable is given, the number of elements must match the number of test cases and aga will check that.

Foe example, if you want to set a series of tests to hidden and define a bunch of golden outputs for them, we can do

@test_cases([1, 2, 3], aga_hidden=True, aga_expect=[1, 4, 9])
@problem()
def square(x: int) -> int:
 """Square x."""
 return x * x

@test_cases(1, 2, 3, aga_expect=[1, 1, 4, 4, 9, 9]) since the numbers don’t match.

Checking Scripts

Sometimes, submissions look like python scripts, meant to be run from the
command-line, as opposed to importable libraries. To test a script, provide the
script=True argument to the problem decorator:

@test_case("Alice", "Bob")
@test_case("world", "me")
@problem(script=True)
def hello_name() -> None:
 """A simple interactive script."""
 listener = input("Listener? ")
 print(f"Hello, {listener}.")

 speaker = input("Speaker ?")
 print(f"I'm {speaker}.")

This has three implications:

	Aga will load the student submission as a script, instead of looking for a
function with a matching name.

	Aga will compare the standard output of the student submission to the
standard output of the golden solution.

	Aga will interpret the arguments to test_case as mocked outputs of the
built in input() function. For example, for the “Alice”,”Bob” test case,
aga will expect this standard output:

Hello, Alice.
I'm Bob.

Creating Pipelines

When testing against a class or an object, you can create a pipeline of functions to be called. This is useful if you want to test on the same object using different a sequence of actions.

A pipeline is a sequence of function (which sometimes is referred as a process) that accepts two inputs, the object it’s testing on and the previous result generated by the proceeding function, and outputs a result. The pipeline will be run on the golden solution and students’ solution, and the output results will be compared individually. You can create a pipeline from any of the following directives.

from aga import test_case, param, test_cases, problem
from aga.core.utils import initializer

def fn1(obj, previous_result):
 ...

def fn2(obj, previous_result):
 ...

@test_case.pipeline(initializer, fn1, fn2)
@test_cases(param.pipeline(initializer, fn1, fn2))
@problem()
class TestProblem:
 ...

The library provides several useful functions. They can be imported from aga.core.utils, like the initializer function above. One can use initializer to initialize the class under testing. Note that if you want to initialize the class with arguments, you can ONLY use initializer.

You can use the following linked list code as an example. It will generate a test case of multiple actions and outputs.

from __future__ import annotations
from aga import test_case, problem
from aga.core.utils import initializer, MethodCallerFactory, PropertyGetterFactory

prepend = MethodCallerFactory("prepend")
display = MethodCallerFactory("display")
pop = MethodCallerFactory("pop")
get_prop = PropertyGetterFactory()

actions_and_outputs = {
 initializer: None,
 prepend(10): None,
 display(): None,
 prepend(20): None,
 display(): None,
 prepend(30): None,
 display(): None,
 get_prop("first.value"): 30,
 get_prop("first", "next", "value"): 20,
 get_prop("first", ".next", ".value"): 20,
 get_prop(".first", "next", "value"): 20,
 pop(): 30,
 pop(): 20,
 pop(): 10,
}

class Node:
 """A node in a linked list."""

 def __init__(self, value: int, next_node: Node | None = None) -> None:
 self.value = value
 self.next = next_node

@test_case.pipeline(
 *actions_and_outputs.keys(),
 aga_expect_stdout="< 10 >\n< 20 10 >\n< 30 20 10 >\n",
 aga_expect=list(actions_and_outputs.values()),
)
@problem()
class LL:
 """A linked list for testing."""

 def __init__(self) -> None:
 self.first: Node | None = None

 def __repr__(self) -> str:
 """Return a string representation of the list."""
 return f"< {self._chain_nodes(self.first)}>"

 def _chain_nodes(self, node: Node | None) -> str:
 if node is None:
 return ""
 else:
 return f"{node.value} {self._chain_nodes(node.next)}"

 def display(self) -> None:
 """Print the list."""
 print(self)

 def prepend(self, value: int) -> None:
 """Add a new element to the front of the list."""
 self.first = Node(value, self.first)

 def pop(self) -> int:
 """Remove the first element from the list and return it."""
 if self.first is None:
 raise IndexError("Cannot pop from an empty list")

 value = self.first.value
 self.first = self.first.next
 return value

 Configuration

Configuration

Aga is configured in a simple toml format. By default, it looks for aga.toml
in the current working directory; this is overridden by the --config CLI
option.

Here is the full list of configuration options, with defaults:

This file contains all the default configuration options.

[test]
Configuration related to formatting and execution of test cases.

The separator for test case name generation.
name_sep = ","

The format string for generating test case names.
#
Supported format specifiers:
- `args`: a separated list of the test case arguments, i.e. `0,3`
- `kwargs`: a separated list of the test case keyword arguments, i.e. `x=0,y=3`
- `sep`: a copy of the separator if there are both arguments and keyword arguments,
empty otherwise
name_fmt = "Test on {args}{sep}{kwargs}."

The format string for generating failure messages.
#
Supported format specifiers:
- `input`: a formatted repr of the test case inputs.
- `output`: the repr of the student submission's output.
- `expected`: the repr of the golden solution's output.
- `diff` if a diff is available (i.e. the output is a string), a text diff.
- `diff_explanation`: if a diff is available, the value of diff_explanation_msg, else empty.
failure_msg = "Your submission didn't give the output we expected. We checked it with {input} and got {output}, but we expected {expected}.{diff_explanation}{diff}"

The format string for generating error messages.
#
Supported format specifiers:
- `type`: the kind of python error, e.g. NameError.
- `message`: the error message.
- `traceback`: the error traceback.
error_msg = "A python {type} occured while running your submission: {message}.\n\nHere's what was running when it happened:{traceback}."

The message to print if `check_stdout` is true and the stdouts differ.

Supported format specifiers:
- `input`: a formatted repr of the test case inputs.
- `output`: the repr of the student submission's output.
- `expected`: the repr of the golden solution's output.
- `diff` a text diff.
- `diff_explanation`: the value of diff_explanation_msg.
stdout_differ_msg = "Your submission printed something different from what we expected. We checked it with {input}.{diff_explanation}{diff}"

diff_explanation_msg = "\n\nHere's a detailed look at the difference between the strings. Lines starting with `-` are what we got from you, lines starting with `+` are what we expected, and `_`s in lines starting with `?` denote characters that are different. Be wary for spaces, which don't show up well in this format.\n\n"

[submission]
Configuration related to student submissions.

The global message to show if any tests failed.
failed_tests_msg = "It looks like some tests failed; take a look and see if you can fix them!"

The global message to show if any hidden tests failed.
failed_hidden_tests_msg = "Some of those tests were hidden tests, for which you won't know the inputs. In the real world, we don't always know exactly how or why our code is failing. Try to test edge cases and see if you can find the bugs!"

The global message to show if no tests failed.
no_failed_tests_msg = "Great work! Looks like you're passing all the tests."

[loader]
Configuration related to rerors loading student submissions.

The message to show on errors that prevented the submission from being run.
#
Supported format specifiers:
- `message`: the error message.
import_error_msg = "Looks like there's a python error in your code that prevented us from running tests: {message}. Please fix this error, test your code again, and then resubmit."

The message to show if there's no symbol with the right name located.
#
Supported format specifiers:
- `name`: the expected symbol name.
no_match_msg = "It looks like you didn't include the right object; we were looking for something named `{name}`. Please resumbit with the correct name."

The message to show if there's multiple symbols matching the expected name, i.e. in multiple submitted files.
#
Supported format specifiers:
- `name`: the expected symbol name.
too_many_matches_msg = "It looks like multiple files you submitted have objects named `{name}`; unfortunately, we can't figure out which one is supposed to be the real submission. Please remove all but one of them and resumbit."

The message to show if no script is found.
no_script_error_msg = "It looks like you didn't upload a python script. Please make sure your script ends in `.py`."

The message to show if multiple scripts are found.
multiple_scripts_error_msg = "It looks like you uploaded multiple python scripts. Please make sure you only upload one file ending in `.py`."

[problem]
Configration for problem settings.

If true, check that the stdout of the problem and submission both match.
check_stdout = false

If true, test case arguments will be interpreted as outputs for successive calls of `input()`.
mock_input = false

 Injection

Injection

What is injection and why?

Users of aga find they need to copy and paste snippets of scripts to each of problem description python file, which is creating a lot of redundant code. Take the following example. The prize_fn has to be copied every time a new problem is created.

def prize_fn(tests: list[TcOutput], _: SubmissionMetadata) -> tuple[float, str]:
 """Check that all tests passed."""
 # HUNDREDS OF LINES OF CODE HERE !!!!!
 if all(t.is_correct() for t in tests):
 return 1.0, "Good work! You earned these points since all tests passed."
 else:
 return 0.0, "To earn these points, make sure all tests pass."

@prize(prize_fn, value=10)
@problem()
def add(x: int, y: int) -> int:
 """Add x and y."""
 return x + y

To solve this problem, we introduce the concept of injection, so that the shared code can be written in one place and be injected in every problem description file. So that the code above can be rewritten as follows, and no duplicated code will be generated.

shared_prize_func.py

def prize_fn(tests: list[TcOutput], _: SubmissionMetadata) -> tuple[float, str]:
 """Check that all tests passed."""
 # HUNDREDS OF LINES OF CODE HERE !!!!!
 if all(t.is_correct() for t in tests):
 return 1.0, "Good work! You earned these points since all tests passed."
 else:
 return 0.0, "To earn these points, make sure all tests pass."

problem 1
... necessary imports
from aga.injection import prize_fn

@prize(prize_fn, value=10)
@problem()
def add(x: int, y: int) -> int:
 """Add x and y."""
 return x + y

problem 2
... necessary imports
from aga.injection import prize_fn

@prize(prize_fn, value=10)
@problem()
def multiply(x: int, y: int) -> int:
 """Multiply x and y."""
 return x * y

How to use injection

There are several commands related to injection. You can find the help and description in the CLI help message. It’s duplicated down below for the convenience of reading.

 --inject PATH Inject a util file into the submission directory.
 --inject-all PATH Inject all util files in the specified folder into the submission directory.
 --injection-module TEXT The name of the module to import from the injection directory. [default: injection]
 --auto-inject Find the first injection directory recursively and automatically.

You can specify a specific file to inject using --inject <file_path> or inject all files in a folder using --inject-all <dir_path>. You can also specify the name of the injection module, which is defaulted to injection so that the injection imports will be from aga.injection import When changed to my_injection for example, it will make the import command to be from aga.my_injection import

You can also use the --auto-inject flag to automatically find the first injection directory (this will likely be changed to all injection directories in the future) upward recursively. aga finds aga_injection folder starting from the current working directory, which is the folder in which you entered aga gen/check/run commands. For example, considering the following dir tree:

.
└── courses/
 └── csci121/
 ├── hw1/
 │ ├── aga_injection/
 │ │ └── jims_prize_fn.py
 │ └── pb1.py
 ├── hw2/
 │ ├── aga_injection/
 │ │ └── jams_prize_fn.py
 │ └── pb2.py
 └── aga_injection/
 └── jems_prize_fn.py

If aga check --auto-inject pb1.py is run in hw1 directory, jims_prize_fn.py will be used. However, if aga check --auto-inject ./hw1/pb1.py is run in the csci121 directory, jems_prize_fn.py will be used.

 Advanced Features

Advanced Features

Prizes

If you want finer control over the points allocation of problems, you can add
points prizes to them, which let you run custom functions over the list of
completed tests in order to assign points values:

from aga import problem, test_case
from aga.prize import prize, TcOutput, SubmissionMetadata

def all_correct(
 tests: list[TcOutput], _: SubmissionMetadata
) -> tuple[float, str]:
"""Check that all tests passed."""
 if all(t.is_correct() for t in tests):
 return 1.0, "Good work! You earned these points since all tests passed."
 else:
 return 0.0, "To earn these points, make sure all tests pass."

@prize(all_correct, name="Prize")
@test_case(0)
@test_case(2)
@problem()
def square(x: int) -> int:
 """Square x."""
		return x * x

If only one of the 0 or 2 test cases pass, the student will receive 1/3
credit for this problem. If both pass, they will receive full credit.

We provide more details and several pre-written prize functions in the
prize(reference.html#module-aga.prize) documentation.

Overriding the Equality Check

By default, aga uses unittest’s assertEqual, or assertAlmostEqual for
floats, to test equality. This can be overridden with the aga_override_check
argument to test_case. This argument takes a function of three arguments: a
unittest.TestCase object (which you should use to make assertions), the golden
solution’s output, and the student submission output. For example, to test a
higher-order function:

from typing import Callable

from aga import problem, test_case

def _make_n_check(case, golden, student):
 # here `golden` and `student` are the inner functions returned by the
 # submissions, so they have type int -> int`
 for i in range(10):
 case.assertEqual(golden(i), student(i), f"Solutions differed on input {i}.")

@test_cases(-3, -2, 16, 20, aga_override_check=_make_n_check)
@test_case(0, aga_override_check=_make_n_check)
@test_case(2, aga_override_check=_make_n_check)
@problem()
def make_n_adder(n: int) -> Callable[[int], int]:
 def inner(x: int) -> int:
 return x + n
 return inner

Overriding the Entire Test

If you want even more granular control, you can also override the entire test.
The aga_override_test argument to test_case takes a function of three
arguments: the same unittest.TestCase object, the golden solution (the
solution itself, not its output), and the student solution (ditto). For
example, to mock some library:

from unittest.mock import patch

from aga import problem, test_case

def mocked_test(case, golden, student):
 with patch("foo") as mocked_foo:
 case.assertEqual(golden(0), student(0), "test failed")

@test_case(aga_override_test=mocked_test)
@problem()
def call_foo(n):
 foo(n)

A common use-case is to disallow the use of certain constructs. For
convenience, aga provides the
Disallow class. For example, to force
the student to use a lambda instead of a def:

import ast

from aga import problem, test_case
from aga.checks import Disallow

I recommend you use `aga_name` here, because the generated one won't be very good
@test_case(
 aga_name="Use lambda, not def!",
 aga_override_test=Disallow(nodes=[ast.FunctionDef]).to_test()
)
@problem()
def is_even_lambda(x: int) -> bool:
 return x % 2 == 0

For full details on Disallow, see the reference.

If you wish to write your own checks, you can use the methods provided by unittest.TestCase [https://docs.python.org/3/library/unittest.html#unittest.TestCase]. For example, the override function can be written as:

def my_check(case, golden, student):
 case.assertEqual(golden(*case.args), student(*case.args), "test failed")

The case exposes args arguments and kwargs variables which are passed from test_case decorator. For example, test_case(3, 4, z = 10) will create a case with args = (3, 4) and kwargs = {"z": 10}. All the aga_* kwargs will be strip away in the building process.

The case also exposes name and description variables which are the name of the test case and the description of the test case. Changing those variables is equivalent to changing aga_name and aga_description but this means you can set it dynamically during the testing.

Capture Context Values

Sometimes a piece of assignment file includes multiple classes, and even though only one class is eventually tested, the other parts of students’ answers can be crucial. For example, consider the following file. You can specify in the ctx argument of problem decorator to capture the GasStation class, and in the override check function, you can reference the GasStation class in the student’s answer.

from aga import problem, test_case

def override_check(case, golden, student):
 # use case.ctx.GasStation to reference student's GasStation class implementation
 ...

@test_case(aga_override_check=override_check)
@problem(ctx=['GasStation'])
class Car:
 # uses gas station somewhere in the code
 ...

class GasStation:
 ...

Essentially, ctx argument takes in an iterable of strings, and aga will search the corresponding fields in the students’ submitted module (file).

Note that ctx is should not be modified during overriden check functions, since the changes will persist to all the following test cases, which might not be the intended behavior.

 Determining Score

Determining Score

This section describes the complete semantics for computing the score of a test
case. Each test case is scored as all-or-nothing.

Each problem is sorted into a specific group by virtue of the
group decorator. A group consists of every test
case or prize (prizes and test cases work the same for the purposes of this
algorithm) underneath that group, and before the next group decorator. There is
an implicit group consisting of all test cases preceding the first decorator.
For example, in the following setup, there are three groups; one consists of the
negative cases, one of 0, and one of the positive cases.

@test_case(-2)
@test_case(-1)
@group()
@test_case(0)
@group()
@test_case(1)
@test_case(2)
@problem()
def square(x: int) -> int:
 return x * x

Each group is first assigned a total score, and then each test case in a group
is assigned a score. These processes work identically; we will think of either a
group or a test case as a scorable object. Scorable objects possess a value
(default 0), which is absolute, and a weight (default 1), which is relative.
There is some pot of points, the total score which is available as an input to
the algorithm; this is determined by the classroom frontend for the group case,
and the output of the group algorithm for the indivial test case.

For each object, the algorithm first sets its score to its value, decrementing
the total score by that value. The algorithm allows for the sum of values to
potentially be larger than the total available score; in this case, extra credit
will be available, and relative weights will have no effect. The algorithm then
divides the remaining total score according to weight.

For example, consider the following problem with total score 20.

@test_case(-2, aga_weight = 2)
@test_case(-1, aga_weight = 0, aga_value = 2.0)
@test_case(0, aga_weight = 2, aga_value = 4.0)
@test_case(1, aga_value = 2.0)
@test_case(2)
@problem()
def square(x: int) -> int:
 return x * x

Every test case is in the implicit group, which has weight one and value zero,
and so it is assigned all 20 points. We have the following weights and values:

	Case

	Weight

	Value

	-2

	2

	0.0

	-1

	0

	2.0

	0

	2

	4.0

	1

	1

	2.0

	2

	1

	0.0

First, processing values leaves total score 12 and gives the following temporary
scores:

	Case

	Score

	-2

	0.0

	-1

	2.0

	0

	4.0

	1

	2.0

	2

	0.0

Next, we divide the remaining 12 units of score amongst the 6 units of weight,
so each unit of weight represents 2 units of score. This give the final scores.

	Case

	Score

	-2

	4.0

	-1

	2.0

	0

	8.0

	1

	4.0

	2

	2.0

 Reference

Reference

Aga grades assignments: a library for easily producing autograders for code.

Anything not explicitly documented here should not be used directly by clients and is
only exposed for testing, the CLI, and type hinting.

	
aga.group(weight=1, value=0.0, extra_credit=0.0)

	Declare a group of problems.

	Parameters

	
	weight (int) – The group’s relative weight to the problem’s score. See Determining Score
for details.

	value (float) – The group’s absolute score. See Determining Score for details.

	extra_credit (float) – The group’s extra credit. See Determining Score for details.

	Returns

	A decorator which adds the group to a problem.

	Return type

	Callable[[Problem[T]], Problem[T]]

	
aga.param

	alias of aga.core.parameter._TestParam

	
aga.problem(name=None, script=False, check_stdout=None, mock_input=None, ctx=())

	Declare a function as the golden solution to a problem.

This method should decorate a function which is known to produce the correct
outputs, which we refer to as the “golden solution”. It also provides facilities
for testing that solution, via golden test cases, constructed by passing the
output argument to the test_case decorator.

	Parameters

	
	name (Optional[str]) – The problem’s name. If None (the default), the wrapped function’s name will be
used.

	script (bool) – Whether the problem represents a script, as opposed to a function. Implies
check_stdout and mock_input unless they are passed explicitly.

	check_stdout (Optional[bool]) – Overrides the problem.check_stdout configuration option. If True, check the
golden solution’s stdout against the student submission’s for all test cases.

	mock_input (Optional[bool]) – Overrides the problem.mock_input configuration option. If True, test cases for
this problem will be interpreted as mocked outputs of builtins.input, rather
than inputs to the function.

	ctx (Iterable[str]) – The context values required in the submission and will be captured

	Returns

	A decorator which turns a golden solution into a problem.

	Return type

	Callable[[Callable[ProblemInput, T]], Problem[T]]

	
aga.test_case

	alias of aga.core.parameter._TestParam

	
aga.test_cases

	alias of aga.core.parameter._TestParams

Core

The core library functionality.

	
class aga.core.AgaTestCase(test_input, golden, under_test, metadata)

	A TestCase which runs a single test of a Problem.

	
property description: str | None

	Get the problem’s description.

	Return type

	UnionType[str, None]

	
property metadata: aga.core.suite.TestMetadata

	Get the test’s metadata.

	Return type

	TestMetadata

	
property name: str

	Format the name of the test case.

	Return type

	str

	
runTest()

	Run the test case.

	Return type

	None

	
shortDescription()

	Dynamically generate the test name.

This method is called by unittest.

	Return type

	str

	
property test_input: aga.core.suite._TestInputs[aga.core.suite.Output]

	Get the test input.

	Return type

	_TestInputs[~Output]

	
class aga.core.AgaTestSuite(config, tests)

	A thin wrapper around TestSuite that store a config.

	
class aga.core.Problem(golden, name, config, is_script, ctx_targets=())

	Stores tests for a single problem.

	
add_group(grp)

	Add a group to the problem.

	Return type

	None

	
add_prize(prize)

	Add a prize to the current group.

	Return type

	None

	
add_test_case(param)

	Add a test case to the current group.

Student solutions will be checked against the golden solution; i.e., this method
does _not_ produce a test of the golden solution.

	Return type

	None

	
check()

	Check that the problem is correct.

Currently, this runs all tests of the golden solution.

	Return type

	None

	
config()

	Get access to the problem’s config.

	Return type

	AgaConfig

	
expected_symbol()

	Get the name of the symbol that should be tested against.

	Return type

	str

	
generate_test_suite(under_test, metadata)

	Generate a TestSuite for the student submitted function.

Neither the generated test suite nor the body of this function will run golden
tests; instead, golden test cases are treated as equivalent to ordinary ones. To
test the golden function, check should be used instead.

	Parameters

	
	under_test (Callable[ProblemParamSpec, ProblemOutputType]) – The student submitted function.

	metadata (SubmissionMetadata) – The submission metadata.

	Return type

	tuple[AgaTestSuite, list[ScoredPrize]]

	Returns

	
	AgaTestSuite – A unittest test suite containing one test for each TestInput in this
problem, checking the result of the problem’s golden solution against
under_test.

	list[ScorePrize] – The prizes for the problem, with scores assigned.

	
property golden: Callable[[~ProblemParamSpec], aga.core.problem.ProblemOutputType]

	The gold solution property.

	Return type

	Callable[[ParamSpec], ~ProblemOutputType]

	
name()

	Get the problem’s name.

	Return type

	str

	
property submission_context: aga.core.context.SubmissionContext

	The environment values captured from the problem module.

	Return type

	SubmissionContext

	
update_config_weak(config)

	Update any non-default items in self.config.

	Return type

	None

	
class aga.core.SubmissionMetadata(total_score, time_since_due, previous_submissions)

	Metadata for testing a submission, collected from the frontend.

	
total_score

	The problem’s total score.

	Type

	float

	
time_since-due

	The delta _from_ the due date _to_ the submission date, i.e. it’s negative if
the problem was submitted before the due date.

	Type

	timedelta

	
previous_submissions

	The number of previous submissions.

	Type

	int

	
is_on_time()

	Return true of the submission was on time.

	Return type

	bool

	
class aga.core.TestMetadata(max_score, config, check_stdout, mock_input, hidden=False)

	Stores metadata about a specific test case.

	
aga.core.group(weight=1, value=0.0, extra_credit=0.0)

	Declare a group of problems.

	Parameters

	
	weight (int) – The group’s relative weight to the problem’s score. See Determining Score
for details.

	value (float) – The group’s absolute score. See Determining Score for details.

	extra_credit (float) – The group’s extra credit. See Determining Score for details.

	Returns

	A decorator which adds the group to a problem.

	Return type

	Callable[[Problem[T]], Problem[T]]

	
aga.core.param

	alias of aga.core.parameter._TestParam

	
aga.core.problem(name=None, script=False, check_stdout=None, mock_input=None, ctx=())

	Declare a function as the golden solution to a problem.

This method should decorate a function which is known to produce the correct
outputs, which we refer to as the “golden solution”. It also provides facilities
for testing that solution, via golden test cases, constructed by passing the
output argument to the test_case decorator.

	Parameters

	
	name (Optional[str]) – The problem’s name. If None (the default), the wrapped function’s name will be
used.

	script (bool) – Whether the problem represents a script, as opposed to a function. Implies
check_stdout and mock_input unless they are passed explicitly.

	check_stdout (Optional[bool]) – Overrides the problem.check_stdout configuration option. If True, check the
golden solution’s stdout against the student submission’s for all test cases.

	mock_input (Optional[bool]) – Overrides the problem.mock_input configuration option. If True, test cases for
this problem will be interpreted as mocked outputs of builtins.input, rather
than inputs to the function.

	ctx (Iterable[str]) – The context values required in the submission and will be captured

	Returns

	A decorator which turns a golden solution into a problem.

	Return type

	Callable[[Callable[ProblemInput, T]], Problem[T]]

	
aga.core.test_case

	alias of aga.core.parameter._TestParam

	
aga.core.test_cases

	alias of aga.core.parameter._TestParams

Core - Parameters

	
class aga.core.parameter._TestParam(*args: Any, aga_expect: Any = 'None', aga_expect_stdout: Optional[Union[str, Sequence[str]]] = 'None', aga_hidden: bool = 'False', aga_name: str | None = 'None', aga_description: str | None = 'None', aga_weight: int = '1', aga_value: float = '0.0', aga_extra_credit: float = '0.0', aga_override_check: Optional[Callable[[...], Any]] = 'None', aga_override_test: Optional[Callable[[...], Any]] = 'None', aga_is_pipeline: bool = 'False', **kwargs: Any)

	
class aga.core.parameter._TestParam(*args: Any, **kwargs: Any)

	
	
property aga_kwargs: aga.core.parameter.AgaKeywordDictType

	Return the aga_* keyword arguments of the test.

	Return type

	AgaKeywordDictType

	
aga_kwargs_repr(sep=',')

	Return a string representation of the test’s aga_* keyword arguments.

	Return type

	str

	
property args: Tuple[Any, ...]

	Return the arguments to be passed to the functions under test.

	Return type

	Tuple[Any, …]

	
args_repr(sep=',')

	Return a string representation of the test’s arguments.

	Return type

	str

	
property description: str | None

	Get the description of the test case.

	Return type

	UnionType[str, None]

	
ensure_aga_kwargs()

	Ensure that the aga_* keywords are handled correct.

	Return type

	AgaKeywordContainer

	
ensure_default_aga_values()

	Ensure that the aga_* keywords all have default.

	Return type

	AgaKeywordContainer

	
ensure_valid_kwargs()

	Ensure that the aga_* keywords are handled correct.

	Return type

	_TestParam

	
property expect: Any

	Get the expected aga_expect of the test case.

	Return type

	Any

	
property expect_stdout: str | None

	Get the expected aga_expect_stdout of the test case.

	Return type

	UnionType[str, None]

	
property extra_credit: float

	Get the extra credit aga_extra_credit of the test case.

	Return type

	float

	
generate_test_case(prob)

	Generate a test case for the given problem.

	Return type

	Problem[ProblemParamSpec, ProblemOutputType]

	
property hidden: bool

	Get the hidden aga_hidden of the test case.

	Return type

	bool

	
property is_pipeline: bool

	Get the is_pipeline aga_is_pipeline of the test case.

	Return type

	bool

	
property kwargs: Dict[str, Any]

	Return the keyword arguments to be passed to the functions under test.

	Return type

	Dict[str, Any]

	
kwargs_repr(sep=',')

	Return appropriate string representation of the test’s keyword arguments.

	Return type

	str

	
property name: str | None

	Get the name of the test case.

	Return type

	UnionType[str, None]

	
property override_check: Optional[Callable[[...], Any]]

	Get the override_check aga_override_check of the test case.

	Return type

	Optional[Callable[…, Any], None]

	
property override_test: Optional[Callable[[...], Any]]

	Get the override_test aga_override_test of the test case.

	Return type

	Optional[Callable[…, Any], None]

	
sep_repr(sep=',')

	Return sep if both exist, “” otherwise.

	Return type

	str

	
update_aga_kwargs(**kwargs)

	Update the keyword arguments to be passed to the functions under test.

	Return type

	AgaKeywordContainer

	
property value: float

	Get the value aga_value of the test case.

	Return type

	float

	
property weight: int

	Get the weight aga_weight of the test case.

	Return type

	int

	
class aga.core.parameter._TestParams(*args: Any, aga_expect: Any = 'None', aga_expect_stdout: Optional[Union[str, Sequence[str]]] = 'None', aga_hidden: bool = 'False', aga_name: str | None = 'None', aga_description: str | None = 'None', aga_weight: int = '1', aga_value: float = '0.0', aga_extra_credit: float = '0.0', aga_override_check: Optional[Callable[[...], Any]] = 'None', aga_override_test: Optional[Callable[[...], Any]] = 'None', aga_is_pipeline: bool = 'False', aga_product: bool = 'False', aga_zip: bool = 'False', aga_params: bool = 'False', aga_singular_params: bool = 'False', **kwargs: Any)

	
class aga.core.parameter._TestParams(*args: Any, **kwargs: Any)

	A class to store the parameters for a test.

	
static add_aga_kwargs(aga_kwargs, final_params)

	Add aga_kwargs to the finalized parameters.

	Return type

	None

	
params: ClassVar[functools.partial[aga.core.parameter._TestParams]] = functools.partial(<class 'aga.core.parameter._TestParams'>, aga_params=True)

	

	
static parse_no_flag(*args, **kwargs)

	Parse the parameters for no flag.

	Return type

	List[_TestParam]

	
static parse_params(*args, **kwargs)

	Parse the parameters for param sequence.

	Return type

	List[_TestParam]

	
static parse_singular_params(*args, **kwargs)

	Parse the parameters for param sequence.

	Return type

	List[_TestParam]

	
static parse_zip_or_product(*args, aga_product=False, aga_zip=False, **kwargs)

	Parse parameters for zip or product.

	Return type

	List[_TestParam]

	
product: ClassVar[functools.partial[aga.core.parameter._TestParams]] = functools.partial(<class 'aga.core.parameter._TestParams'>, aga_product=True)

	

	
singular_params: ClassVar[functools.partial[aga.core.parameter._TestParams]] = functools.partial(<class 'aga.core.parameter._TestParams'>, aga_singular_params=True)

	

	
zip: ClassVar[functools.partial[aga.core.parameter._TestParams]] = functools.partial(<class 'aga.core.parameter._TestParams'>, aga_zip=True)

	

Prizes

Add points prizes to problems.

This module contains the prize decorator, which lets you define custom post-test-run
points hooks for things like correctness and lateness. It also contains several prizes,
defined for convenience.

	
class aga.prize.SubmissionMetadata(total_score, time_since_due, previous_submissions)

	Metadata for testing a submission, collected from the frontend.

	
total_score

	The problem’s total score.

	Type

	float

	
time_since-due

	The delta _from_ the due date _to_ the submission date, i.e. it’s negative if
the problem was submitted before the due date.

	Type

	timedelta

	
previous_submissions

	The number of previous submissions.

	Type

	int

	
is_on_time()

	Return true of the submission was on time.

	Return type

	bool

	
class aga.prize.TcOutput(score, max_score, name, status=None, hidden=False, description=None, error_description=None)

	Stores information about a completed test case.

	
score

	The test’s score.

	Type

	float

	
max_score

	The max score for the test.

	Type

	float

	
name

	The test’s name.

	Type

	str

	
description

	Human-readable text description of the test. Some frontends distinguish
between no output and empty output, i.e. in terms of showing UI elements.

	Type

	Optional[str]

	
error_description

	Human-readable error description of the test.

	Type

	Optional[str]

	
hidden

	The test’s visibility.

	Type

	bool

	
static format_description(desc)

	Format a description.

	Return type

	str

	
static format_error_description(error)

	Format an error description.

	Return type

	str

	
static format_rich_output(description=None, error_description=None)

	Format a rich output.

	Return type

	str

	
is_correct()

	Check whether the problem received full credit.

	Return type

	bool

	
property rich_output: str

	Output of all the descriptions.

	Return type

	str

	
aga.prize.all_correct(tests, _)

	1.0 if all tests passed, 0.0 otherwise.

For use as a prize.

	Return type

	tuple[float, str]

	
aga.prize.correct_and_on_time(tests, metadata)

	1.0 if the submission was correct and passed all tests, 0.0 otherwise.

For use as a prize.

	Return type

	tuple[float, str]

	
aga.prize.on_time(_, metadata)

	1.0 if the submission was on time, 0.0 otherwise.

For use as a prize.

	Return type

	tuple[float, str]

	
aga.prize.prize(criteria, name='Prize', weight=1, value=0.0, extra_credit=0.0, hidden=False)

	Add a points prize to the problem.

	Parameters

	
	criteria (Callable[[list[TcOutput], SubmissionMetadata], tuple[float, str]) – The criteria for awarding the prize’s points. The first returned value should be
a float from 0 to 1 which determines the fraction of points to assign. The
second should be a string which will be displayed to the student.

	name (str) – The name of the prize, to be displayed to the student.

	weight (int) – The prize’s weight. See Determining Score for details.

	value (int) – The prize’s absolute score. See Determining Score for details.

	extra_credit (int) – The prize’s extra credit. See Determining Score for details.

	hidden (bool) – Whether the prize should be hidden from the student.

	Returns

	A decorator which adds the prize to a problem.

	Return type

	Callable[[Problem[T]], Problem[T]]

Checks

Additional checks and filters for problems.

	
class aga.checks.Disallow(functions=None, binops=None, nodes=None)

	A list of items to disallow in code.

	
functions

	The names of functions which the student should not be able to call.

	Type

	list[str]

	
binops

	The types of binary operations wihch the student should not be able to use.
E.x., to forbid floating-point division, use ast.Div. See
here [https://docs.python.org/3/library/ast.html#ast.BinOp] for a list.

	Type

	list[type]

	
nodes

	The types of any ast nodes wihch the student should not be able to use.
E.x., to forbid for loops, use ast.For. See
the docs [https://docs.python.org/3/library/ast.html#node-classes] for a
list.

	Type

	list[type]

Examples

To disallow the built-in map function: Disallow(functions=["map"]).

To disallow the built-in str.map function: Disallow(functions=["count"]).
Note that for class method names, you just use the name of the function.

Note that there is no way to disallow += without also disallowing + with this
API.

	
search_on_object(obj)

	Search for disallowed AST objects in a python object.

	Return type

	Iterable[tuple[str, int]]

	
search_on_src(src)

	Search for disallowed AST objects in a source string.

	Return type

	Iterable[tuple[str, int]]

	
to_test()

	Generate a test method suitable for aga_override_test of test_case.

You can pass the output of this method directly to aga_override_test.

You can also use the lower-level methods search_on_object or search_on_src
if you want to generate your own error message.

	Return type

	Callable[[TestCase, Callable[…, ~Output], Callable[…, ~Output]], None]

	
aga.checks.Site

	alias of tuple[str, int]

 Command-Line Interface

Command-Line Interface

The command-line interface allows checking (via test cases with provided
aga_expect) the validity of golden solutions, as well as generating the
autograder file from a problem.

CLI Reference

aga

aga [OPTIONS] COMMAND [ARGS]...

Options

	
--install-completion

	Install completion for the current shell.

	
--show-completion

	Show completion for the current shell, to copy it or customize the installation.

check

Check a problem against test cases with an aga_expect.

aga check [OPTIONS] SOURCE

Options

	
-c, --config <config_file>

	The path to the aga config file.

	Default

	aga.toml

	
--inject <inject>

	Inject a util file into the submission directory.

	Default

	

	
--inject-all <inject_all>

	Inject all util files in the specified folder into the submission directory.

	Default

	

	
--injection-module <injection_module>

	The name of the module to import from the injection directory.

	Default

	injection

	
--auto-inject

	Find the first injection directory recursively and automatically.

	Default

	False

Arguments

	
SOURCE

	Required argument

gen

Generate an autograder file for a problem.

aga gen [OPTIONS] SOURCE

Options

	
-f, --frontend <frontend>

	The frontend to use. Currently only gradescope is supported.

	Default

	gradescope

	
-o, --output <output>

	The path to place the output file(s).

	
-c, --config <config_file>

	The path to the aga config file.

	Default

	aga.toml

	
--inject <inject>

	Inject a util file into the submission directory.

	Default

	

	
--inject-all <inject_all>

	Inject all util files in the specified folder into the submission directory.

	Default

	

	
--injection-module <injection_module>

	The name of the module to import from the injection directory.

	Default

	injection

	
--auto-inject

	Find the first injection directory recursively and automatically.

	Default

	False

Arguments

	
SOURCE

	Required argument

run

Run the autograder on an example submission.

aga run [OPTIONS] SOURCE SUBMISSION

Options

	
-c, --config <config_file>

	The path to the aga config file.

	Default

	aga.toml

	
--points <points>

	The total number of points for the problem.

	Default

	20.0

	
--due <due>

	The problem due date.

	Default

	now

	
--submitted <submitted>

	The problem submission date.

	Default

	now

	
--previous_submissions <previous_submissions>

	The number of previous submissions.

	Default

	0

	
--inject <inject>

	Inject a util file into the submission directory.

	Default

	

	
--inject-all <inject_all>

	Inject all util files in the specified folder into the submission directory.

	Default

	

	
--injection-module <injection_module>

	The name of the module to import from the injection directory.

	Default

	injection

	
--auto-inject

	Find the first injection directory recursively and automatically.

	Default

	False

Arguments

	
SOURCE

	Required argument

	
SUBMISSION

	Required argument

 Development

Development

We have tooling for a modern development workflow provided in an environment
based around poetry. If there’s another workflow you like better, feel free to
use it, but just make sure you’re writing good code, passing tests, and not
introducing additional linter errors. In particular, I will enforce conformance
with black.

Setup

To set up the development environment:

	Clone the repo: git clone git@github.com:nihilistkitten/aga.git && cd aga.

	Install poetry [https://python-poetry.org/docs/#installation].

	Install dependencies: poetry install.

	Activate the development environment: poetry shell.

I encourage you to set up integration between our dev tools and your editor, but
it’s not strictly necessary; you can use them as you please, from their CLIs or
(I suppose) not at all. Regardless, the environment includes
python-lsp-server [https://github.com/python-lsp/python-lsp-server], which I
personally use for this purpose, and can be used via lsp-mode in emacs,
atom-languageclient in atom, or the built-in lsp support in neovim and vscode.

Nox

The tool nox [https://nox.thea.codes/] runs tooling in virtualized
environments. To both run tests and lints, run nox -r (-r prevents nox from
reinstalling the environments across multiple runs, which saves significant
time.)

Testing

Testing depends on pytest [https://docs.pytest.org/]. To run tests, simply run
pytest from within the poetry shell. To run tests via nox, run nox -rs test.

Code coverage information can be generated by pytest --cov. This happens by
default in nox runs.

There are some network-bound end-to-end tests which are not fun by default. You
can run these with pytest -m slow or nox -rs test_slow.

Linting

A number of static analysis tools are available in the development environment:

	mypy [http://mypy-lang.org/], a static type analysis tool.

	pylint [https://pylint.org/], a general-purpose linter.

	flake8 [https://flake8.pycqa.org/en/latest/], a highly modular linter.

	flake8-black [https://github.com/peterjc/flake8-black], a code formatting

	checker. flake8-bugbear [https://github.com/PyCQA/flake8-bugbear], which

	makes flake8 stricter. pydocstyle [http://www.pydocstyle.org/en/stable/], a

	documentation linter.

These tend to be quite strict, but after a while you’ll get used to them, and
they help write much better code.

To run all lints, run nox -rs lint.

Formatting

We use two tools to enforce a uniform code style:

	black [https://github.com/psf/black], a highly opinionated code formatter.

	isort [https://github.com/PyCQA/isort], an import sorter.

To run both formatters, run nox -rs fmt. This is not run by default runs of
nox.

Maintenance

Here I describe how to do common/regular maintenance tasks.

Bump python version

We like to keep the default python version under which tests are run as the most
recent stable version (currently 3.10), so that students don’t unknowingly rely
on new language features and have to debug versioning differences between their
machine and the autograder. Right now, to fix this, we need to:

	Update the documentation: just grep for 3.10 and replace it with the new
version.

	Update the gradescope build: this is handled in setup.sh; you need to
install a different version and change the version we execute the scripts
with.

	Add the new version to be tested in the noxfile.

	Adjust the shebang of the run_autograder executable.

	Adjust .readthedocs.yml to build the docs on the newest python.

Add dependencies

Right now, we have a kind of janky setup where we maintain our own setup.py
for installing the library on gradescope, in
aga/resources/gradescope/setup.py. Whenever we add a dependency, we need to
update this file accordingly.

 License

License

Copyright (c) 2021-2 Riley Shahar <riley.shahar@gmail.com>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 Python Module Index

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 aga	

 	
 	
 aga.checks	

 	
 	
 aga.core	

 	
 	
 aga.prize	

 Index

Index

 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

Symbols

 	
 	
 --auto-inject

 	aga-check command line option

 	aga-gen command line option

 	aga-run command line option

 	
 --config <config_file>

 	aga-check command line option

 	aga-gen command line option

 	aga-run command line option

 	
 --due <due>

 	aga-run command line option

 	
 --frontend <frontend>

 	aga-gen command line option

 	
 --inject <inject>

 	aga-check command line option

 	aga-gen command line option

 	aga-run command line option

 	
 --inject-all <inject_all>

 	aga-check command line option

 	aga-gen command line option

 	aga-run command line option

 	
 --injection-module <injection_module>

 	aga-check command line option

 	aga-gen command line option

 	aga-run command line option

 	
 	
 --install-completion

 	aga command line option

 	
 --output <output>

 	aga-gen command line option

 	
 --points <points>

 	aga-run command line option

 	
 --previous_submissions <previous_submissions>

 	aga-run command line option

 	
 --show-completion

 	aga command line option

 	
 --submitted <submitted>

 	aga-run command line option

 	
 -c

 	aga-check command line option

 	aga-gen command line option

 	aga-run command line option

 	
 -f

 	aga-gen command line option

 	
 -o

 	aga-gen command line option

_

 	
 	_TestParam (class in aga.core.parameter)

 	
 	_TestParams (class in aga.core.parameter)

A

 	
 	add_aga_kwargs() (aga.core.parameter._TestParams static method)

 	add_group() (aga.core.Problem method)

 	add_prize() (aga.core.Problem method)

 	add_test_case() (aga.core.Problem method)

 	
 aga

 	module

 	
 aga command line option

 	--install-completion

 	--show-completion

 	
 aga-check command line option

 	--auto-inject

 	--config <config_file>

 	--inject <inject>

 	--inject-all <inject_all>

 	--injection-module <injection_module>

 	-c

 	SOURCE

 	
 aga-gen command line option

 	--auto-inject

 	--config <config_file>

 	--frontend <frontend>

 	--inject <inject>

 	--inject-all <inject_all>

 	--injection-module <injection_module>

 	--output <output>

 	-c

 	-f

 	-o

 	SOURCE

 	
 	
 aga-run command line option

 	--auto-inject

 	--config <config_file>

 	--due <due>

 	--inject <inject>

 	--inject-all <inject_all>

 	--injection-module <injection_module>

 	--points <points>

 	--previous_submissions <previous_submissions>

 	--submitted <submitted>

 	-c

 	SOURCE

 	SUBMISSION

 	
 aga.checks

 	module

 	
 aga.core

 	module

 	
 aga.prize

 	module

 	aga_kwargs (aga.core.parameter._TestParam property)

 	aga_kwargs_repr() (aga.core.parameter._TestParam method)

 	AgaTestCase (class in aga.core)

 	AgaTestSuite (class in aga.core)

 	all_correct() (in module aga.prize)

 	args (aga.core.parameter._TestParam property)

 	args_repr() (aga.core.parameter._TestParam method)

B

 	
 	binops (aga.checks.Disallow attribute)

C

 	
 	check() (aga.core.Problem method)

 	
 	config() (aga.core.Problem method)

 	correct_and_on_time() (in module aga.prize)

D

 	
 	description (aga.core.AgaTestCase property)

 	(aga.core.parameter._TestParam property)

 	(aga.prize.TcOutput attribute)

 	
 	Disallow (class in aga.checks)

E

 	
 	ensure_aga_kwargs() (aga.core.parameter._TestParam method)

 	ensure_default_aga_values() (aga.core.parameter._TestParam method)

 	ensure_valid_kwargs() (aga.core.parameter._TestParam method)

 	error_description (aga.prize.TcOutput attribute)

 	
 	expect (aga.core.parameter._TestParam property)

 	expect_stdout (aga.core.parameter._TestParam property)

 	expected_symbol() (aga.core.Problem method)

 	extra_credit (aga.core.parameter._TestParam property)

F

 	
 	format_description() (aga.prize.TcOutput static method)

 	format_error_description() (aga.prize.TcOutput static method)

 	
 	format_rich_output() (aga.prize.TcOutput static method)

 	functions (aga.checks.Disallow attribute)

G

 	
 	generate_test_case() (aga.core.parameter._TestParam method)

 	generate_test_suite() (aga.core.Problem method)

 	
 	golden (aga.core.Problem property)

 	group() (in module aga)

 	(in module aga.core)

H

 	
 	hidden (aga.core.parameter._TestParam property)

 	(aga.prize.TcOutput attribute)

I

 	
 	is_correct() (aga.prize.TcOutput method)

 	is_on_time() (aga.core.SubmissionMetadata method)

 	(aga.prize.SubmissionMetadata method)

 	
 	is_pipeline (aga.core.parameter._TestParam property)

K

 	
 	kwargs (aga.core.parameter._TestParam property)

 	
 	kwargs_repr() (aga.core.parameter._TestParam method)

M

 	
 	max_score (aga.prize.TcOutput attribute)

 	metadata (aga.core.AgaTestCase property)

 	
 module

 	aga

 	aga.checks

 	aga.core

 	aga.prize

N

 	
 	name (aga.core.AgaTestCase property)

 	(aga.core.parameter._TestParam property)

 	(aga.prize.TcOutput attribute)

 	
 	name() (aga.core.Problem method)

 	nodes (aga.checks.Disallow attribute)

O

 	
 	on_time() (in module aga.prize)

 	
 	override_check (aga.core.parameter._TestParam property)

 	override_test (aga.core.parameter._TestParam property)

P

 	
 	param (in module aga)

 	(in module aga.core)

 	params (aga.core.parameter._TestParams attribute)

 	parse_no_flag() (aga.core.parameter._TestParams static method)

 	parse_params() (aga.core.parameter._TestParams static method)

 	parse_singular_params() (aga.core.parameter._TestParams static method)

 	parse_zip_or_product() (aga.core.parameter._TestParams static method)

 	
 	previous_submissions (aga.core.SubmissionMetadata attribute)

 	(aga.prize.SubmissionMetadata attribute)

 	prize() (in module aga.prize)

 	Problem (class in aga.core)

 	problem() (in module aga)

 	(in module aga.core)

 	product (aga.core.parameter._TestParams attribute)

R

 	
 	rich_output (aga.prize.TcOutput property)

 	
 	runTest() (aga.core.AgaTestCase method)

S

 	
 	score (aga.prize.TcOutput attribute)

 	search_on_object() (aga.checks.Disallow method)

 	search_on_src() (aga.checks.Disallow method)

 	sep_repr() (aga.core.parameter._TestParam method)

 	shortDescription() (aga.core.AgaTestCase method)

 	singular_params (aga.core.parameter._TestParams attribute)

 	Site (in module aga.checks)

 	
 SOURCE

 	aga-check command line option

 	aga-gen command line option

 	aga-run command line option

 	
 	
 SUBMISSION

 	aga-run command line option

 	submission_context (aga.core.Problem property)

 	SubmissionMetadata (class in aga.core)

 	(class in aga.prize)

T

 	
 	TcOutput (class in aga.prize)

 	test_case (in module aga)

 	(in module aga.core)

 	test_cases (in module aga)

 	(in module aga.core)

 	
 	test_input (aga.core.AgaTestCase property)

 	TestMetadata (class in aga.core)

 	to_test() (aga.checks.Disallow method)

 	total_score (aga.core.SubmissionMetadata attribute)

 	(aga.prize.SubmissionMetadata attribute)

U

 	
 	update_aga_kwargs() (aga.core.parameter._TestParam method)

 	
 	update_config_weak() (aga.core.Problem method)

V

 	
 	value (aga.core.parameter._TestParam property)

W

 	
 	weight (aga.core.parameter._TestParam property)

Z

 	
 	zip (aga.core.parameter._TestParams attribute)

_static/file.png

nav.xhtml

 Table of Contents

 		
 Aga

